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Abstract. Generating functions are defined which permit the computation of moments 
of the end-to-end length of random walks. These functions are applied, within the 
framework of the Domb-Joyce model, to the development of a two-parameter perturbation 
series for the contraction factor a;' of the mean reciprocal distance (Ri') between the 
segments i and j of self-avoiding walks. The case where i or j denotes a chain end is 
shown to be fundamentally different from the case where neither denotes a chain end. 

1. Introduction 

The quantity (R,*) first attracted attention during the study of viscous and frictional 
properties of polymer solutions. It appears, for instance, in the familiar Kirkwood- 
Riseman formula (1948) for the intrinsic viscosity [q]. The average of (Ri') taken 
over the entire chain serves as a definition of the reciprocal of the 'hydrodynamic 
radius' or 'Stokes radius' of the chain (Stockmayer and Albrecht 1958) and appears 
in the Kirkwood expressions for the diffusion and sedimentation coefficients (Kirkwood 
1954). It has not been as extensively studied as other moments of the chain length 
because of the formidable nature of the inverse moment-it depends not only on 
li -il but also on i and on the total chain length. (One should, however, mention the 
perturbation series for the hydrodynamic radius developed by Stockmayer and 
Albrecht in 1958.) Consequently, those wishing to extend the Kirkwood theories to 
include the effects of excluded volume have had to make assumptions of uncertain 
accuracy (e.g. Ullman 1981, Akcasu et af 1981). It would, therefore, be useful if 
more precise results concerning (R;') were available, so that these assumptions could 
be tested. 

The Domb-Joyce (1972) model of a polymer chain has recently been applied with 
some success (Domb and Barrett 1976, Barrett and Domb 1979, 1981) to furnish 
accurate closed-form expressions for chain moments, against which other approximate 
expressions may be tested. The same procedure may be applied, with profit, to moments 
of intra-chain distances. Since, however, the envisaged formula is an interpolation 
between known results on self-avoiding walks and the two-parameter expansion, a 
necessary prerequisite is the establishment of the perturbation series which is the 
object of this work. 

In addition to the difficulties mentioned above, the calculation of the inverse 
moment is further complicated by the fact that the moment is odd. Odd moments of 
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chain length are, strictly speaking, zero. One is interested really in moments of 
R = ( R f  + R: + R , )  , which are somewhat more difficult to compute. It is easy to 
imagine earlier investigators renouncing the computation on the grounds that the 
result would, in any case, be too complicated to be useful. Such an argument is, 
however, no longer valid given the present availability of automatic computing devices. 

2 1 / 2  

2. Some fundamentals 

We consider a random walk, on a lattice or in the continuum, which is characterised 
by the function 

P(R,  x )  = 1 p f l ( R ) x "  
" 

where p, (R)  is the fraction of n-step random walks whose nth step is located at a 
distance R from the walk origin. (For continuum walks, p, (R)  d R  is the probability 
that the walk terminates in the volume element d R  at R after n steps.) We may 
further define the generating function: 

P ( x )  =I P(R,  x )  = (1 - x ) - l  =U-'. 
R 

The sum is to be replaced by an integral for continuum walks. 
The universal nature of the Domb-Joyce model derives from the fact that P(R,  x )  

has the same form for a large class of random walks. Chandrasekhar (1943) showed 
that for a random flight with a Gaussian distribution of step lengths 

P(R, x )  = a-'2(?"''2hoR-' e ~ p [ - ( 6 u ) " ~ R ]  (1) 

and Joyce (1971) has shown that this expression holds asymptotically for cubic lattices 
if the constant ho is appropriately defined. This is, to be sure, an expression of the 
central limit theorem and leads to results which are universally applicable to random 
walks regardless of the specific nature of those walks. 

The constant h ,  is defined by 

ho = ( 3 / 2 ~ ) ~ ' ~ g / a ~ .  

Here a is the step length (or a' the mean square step length as appropriate), and g 
the volume per lattice site. For Gaussian continuum walks g = 1. 

It is possible to think of such a random walk, with a total contour length of n 
segments, as consisting of a central subchain of N segments, a 'short' endchain of (N 
segments, and a 'long' endchain of AN segments. Then 

n = ( l + ( + h ) N .  

Without loss of generality, we may take ( d A .  We are interested in the moments of 
the distribution for the central subchain and denote its end-to-end length by RN(( ,  A ) .  
This length is more commonly represented by (I?,,),, which is the distance between 
the ith and jth segments of a chain of total contour length n.  The indices i and j are 
related to ( and A by 

i = ( N  j = ( l + ( ) N  i sj. 

A similar relation exists for j < i. 



Reciprocal length of polymer chains and subchains 2323 

In the Domb-Joyce model, the excluded volume interaction is introduced by 
assigning a statistical weight 1 - w to each self-intersection of the complete chain. If 
w = 1,  then all self-intersecting configurations have a weight of 0, and the statistics 
are those of self-avoiding walks. Random walk statistics result when w = 0. It can 
be seen that w corresponds to the binary cluster integral and is related to the usual 
two-parameter variable z by 

z = hon 1'2w. 

For a more complete exposition see Domb and Joyce (1972) and Barrett and Domb 
(1979). 

It is now possible to define formally a generating function (or partition function) 
for interacting chains which is analogous to P ( x ) .  We write 

P ( x ,  w ) = C ~ n ( w ) x ~  
n 

which defines p , ( w )  (see Barrett and Domb 1979). It is a simple matter to extend 
this formal definition to the case of three contiguous chains. Set L = [N, M =AN, 
and write 

L N M  P ( x ,  y, 2 :  P L N M ( w ) x  Y z 
L,N,M 

where p L N M ( w )  is an obvious generalisation of p , ( w )  
suppress the arguments x ,  y, z and write this function as P ( w ) .  

be written as 

For convenience, we shall 

If the end-to-end length of the central subchain is the vector RN, then P ( w )  may 

P ( w )  = 1 PWN, w )  
RN 

where P(RN, w )  is the generating function for interacting chains whose central subchain 
has end-to-end length RN. Moments of this distribution function are then defined by 

( R ; ( ~ ) ) = P ( ~ ) - *  R;P(RN, W )  =P'"(W) /P(W)  
R 

and then the following expansions made: 

P ( w ) = To - T1 w + T2 w - * * 

P c m ) ( w ) =  v o - v 1 w + v 2 w 2 -  . . .  
( Y ; ( w ) = ( R ; ( w ) ) / ( R ; ( O ) ) =  l-K:"'w +K;"W*-. . . . 

The desired coefficients K!" are given by 

K:m)  =V1-71 Kim' =V2-72-K\m)T1 

etc where T,  and v, are the coefficients of x N L M  y z in T, and V, respectively. The 
coefficients T, and v,, in general, involve statistics of configurations with r or more 
self-intersections, and may be evaluated by means of the generating functions. In the 
following section we demonstrate how this may be done. 
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3. The generating functions W s )  

At this point we introduce a function 

and also 

@ ( s , X ) = C 4 N ( s ) X N *  

@(O, x )  = P ( x )  = u-l 

N 

Note that 

is the generating function for random walks, and that 

so that 

and 

PC-” = jOm ds @(s, x ) = I @ .  

Indeed, identifying I with D-’ ,  we may formally write 

as the generating function for the mth power of the end-to-end length of the walk. 
For our purposes, it is not necessary to compute 0 exactly-the dominant singular 

part of @ suffices to give the two-parameter result. (The interested reader is referred 
to appendix A of Barrett and Domb (1979) for a fuller discussion.) Now 

To obtain the dominant singular part, we apply the Euler-Maclaurin formula, replacing 
the summation by an integral 

Substitution of (1) yields, upon evaluation of the integral, the very simple function 

This is the simplest of the 0 functions. Other such functions may be defined, as 
necessary, for more complicated configurations. Those required in the computation 
of K\-” are listed in table 1. 
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Table 1. 

4. Application to random walks 

The dimensions of an ideal chain are unaffected by endchains, so 5 and A may be 
set to 0, leaving a random walk of N steps. Such a walk is represented by an unadorned 
straight-line graph. The first reciprocal moment is given by the generating function 

Now the coefficient of x N  in U ”  is (see e.g. Domb and Joyce 1972) 

so that 

(R&’(O)} = (6/ .rra2)’ /2N-1/2.  

If it is desired to compute the average of this quantity taken over the entire chain 
(all possible values of 5 and A ) ,  it is necessary to attach the endchains to the simple 
chain, and then sum over all possible endchain lengths. Since P ( x )  is the generating 
function for chains of all lengths, the graph is represented by the generating function 
P@P = P 2 @ .  The total number of such configurations is the coefficient of x N  in P2@(0) ,  
and the average moment, or inverse hydrodynamic radius R H1 where 

R H 1 ( 0 ) = 2 N - ’  1 (Ri,’(O)} 
i < i  

is twice the coefficient of x N  in 

P ~ I O  = J/6uP5/’ /a 

from which it follows that 

2 1/ZN-1/2 RH‘ (0) = !(6/.rra ) 

These results are not new (see Yamakawa 1971): they are re-derived here for the 
purposes of illustration. 
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5. Application to interacting walks 

The calculation of K:-” follows essentially the rules given in Barrett and Domb 
(1979) generalised according to the principles outlined in the previous section. The 
details are very tedious, and not particularly illuminating, and for this reason we 
simply quote the result here, outlining the contributions from the various diagrams 
in tables 1, 2 and 3. The contribution from graphs 5 and 6 is calculated in an appendix 
for the interested reader. 

The principal result of this paper is the formula 

K:-” = 4h,,”/2[(1 +[ +h)’”-i([ +A)’/2+Ti2((4[)-’/2) +i~  ln(4[) -35 1 1 /2  

+Ti2((4A)-1’2)-Ti2(A1/2)+$~ ln(4A)-iA1’2-i(1 +[) tan -1 [ 1 / 2  

- $( 1 + A )  tan-’ A ‘ I 2  + $( 1 + [ + A )  tan-’(A + [ ) ‘ I 2  - br]. 

Table 2. 

f7 l b )  2 

- 

Table 3. Contributions of two-parameter graphs. 

Graph 

1 and 2 0 

4 
3 (4 - Tr)hoN1/2 

4hoN’/2[1 + (1 +( + A ) ’ / 2 - i ( ( + A ) 1 / 2  - (1 + ( ) ’ I 2 -  (1 + A ) 1 / 2 + t j ’ / 2 + i A  ’I2 
- ;( 1 + 5)  tan-’ 5’’‘ - $( 1 + A )  tan-’ A I ”  +y(1 ’ + [ + A )  tan-’(( + A ) ’ ” ]  

5 4hoN”Z[Ti2((45)-1’2)-Ti2(51/2)+$~ ln(4()+(1 + 1 ) ” * - ( ’ ’ 2 -  11 
6 4hoN”2[Ti,((4A)-”2)-Ti2(A”2)+~lr In(4A)+(l+A)”2-A”2- 11 
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The function Ti2 is the ‘inverse tangent integral’, defined by 
. X  

- 1  Ti2(x) = J y tan-’ y dy 
0 

(see Lewin (1958) ;  I am most grateful to the very thorough referee who identified 
this function). 

It is clear that K:-” is not an analytic function of 4‘ and A .  However if we define 
p as the ratio of 5 to A : 

p = l / A G 1  

then K:-” is seen to be an analytic function of A ‘I2 and p”‘ and may, therefore, be 
expanded in MacLaurin series of these two variables. For A < 1 / 2 :  

Ki-” = - 4 h f 1 1 / ’ [ ( 1  -an) + + A  ( 1  + p )  - A  ’ ” (Z - ip  + . , . ) - & ’ ( I  + 2p + p 2 )  + O(A ’/’)]. 

Asymptotic series are also possible; for 5 < i, A > 1 
K‘-” - - -4h&’/’[(&r In 4 - 1 )  + S(an -&A -3 /2  + . . .) - VS 10 3 / 2  +&A -3/2 + O(A - 5 / 2 ) ]  

and for A >[ > 1 

KFl) = -4h&1/2[in(1n 4 - 1 )  - i A  + &A -3/2 - 

+ g 5 - 3 / 2  + i(r + A  ) - l / ’  - h(s + A  )-312 + O(A -5/2)1. 
An interesting question arises when we wish to write the perturbation expansion 

in terms of the two-parameter excluded volume variable z. It is possible to define z 
in terms of N, the contour length of the central subchain, so that 

a - ’ ( h f l 1 / ’ w )  = 1 + C l ( h f l ’ / ’ w )  +. . . 
in which case C1 is simply Ki-” divided by h a 1 / ’ .  If z is defined in terms of n, the 
total contour length, then 

- 1  
CY ( h o n 1 / 2 w )  = 1 + D l ( h o n  ” ’w)  +. . . 

in which case D1 is K\-” divided by ho( l  +L+A)1’2N1/2. Both these functions are 
plotted against A in  figure 1 for two limiting values of p. 

The most interesting feature of the coefficient is the effect of endchain length upon 
its limiting value. There are clearly three cases of interest: (i) no endchains, (ii) one 

Or 

- 0  5 
-0.5t O1 , I  7 
-1.oF 

0 5 10 15 0 5 10 15 
-1.51 . , -2.5! 

A 

Figure 1. ( a )  C1 and D ,  plotted against A for p = 0. ( 6 )  C, and D 1  plotted against A for 
p = l .  
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endchain and (iii) two endchains. Des Cloizeaux (1980) has identified these as being 
three different ‘universality classes’. This means that, if chain behaviour is assumed 
to be governed by power-law behaviour, then there will be differing exponents for 
each of the three cases. It is impossible to verify this, of course, from an examination 
of the series coefficients; however, the limiting behaviour of the coefficient is strikingly 
different for each case. If A -* 00, then 

C1= 7~ - 4  = -0.858 407 

C1 = ~ ( l  -In 4) = -1.213 580 

C1 = 2 ~ ( l  -In 4) = -2.427 160 

no endchains 

one endchain 

two endchains. 

It is important to realise that the last limit given holds for any finite p >0, regardless 
of how small. This is a fascinating rigorous example of critical behaviour in a physical 
system. 

A similar situation occurs for the first coefficient in the series for at. This coefficient 
was computed years ago by Teramoto et a1 (1958). If their expression is rewritten in 
terms of [ and A ,  and the limit as A +0O taken, then one finds the three respective 
limiting values 2, y, and %?. Note that these are all rational, while the corresponding 
limits for C1 are irrational. 

6. The average value 

By definition 

a;’ = ( R ~ l ( Z ) ) / ( ( R ~ l ( 0 ) ) = l + E I Z +  . . .  . 
The Albrecht-Stockmayer result for E l  is easily obtained. The four contributing 
graphs are shown in table 2(b), and the final result is 

27 3 3 E l  = [ 4 - ( ~ - 2 I n  2)7r]. 

7. Conclusions 

A perturbation series has been developed for the contraction factor ai’ of the 
Domb-Joyce model of a polymer chain. An exact expression has been calculated for 
the first coefficient in this series in the two-parameter limit. 

From this brief study it is possible to draw a number of conclusions, valid for very 
long polymer chains under weak excluded volume conditions. It is clear for instance 
that the effect of endchains upon chain dimensions can be considerable (e.g. the 
limiting value of C1 for two endchains is twice that for a single endchain). One should, 
therefore, exercise care when making approximations which ignore this effect. Further- 
more, it can be seen that the approximation ai’ = (at)-”’ is not justified by the 
two-parameter expansion. 

Finally, it is fascinating to discover that the Des Cloizeaux hypothesis of three 
universality classes finds support in the limiting behaviour of the perturbation series 
coefficients. It will be interesting to see if further evidence of this nature can be found 
for chains exhibiting strong excluded volume. Indeed, it will be interesting to discover 
how reliable the behaviour of the series coefficients is as a guide to a description of 
chains with large excluded volume. 
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Appendix 

From table 1, the generating function for graph 5 is 

P(Y )a& : x, Y )P(Z f 
where 

X, y )  = g-2 J dR dR'P(R ' ,  x ) P ( R ' ,  y)(R -R', x )  e-sR. 

If s is set to 0, we obtain as the singular part of the generating function 

2(tr)1/2h,t-'u-'u-'/(u 1 / 2 + f 1 / 2 )  

where u = 1 -x,  t =  1 - y  and u = 1-2. 

may be done by writing 

N L M  The next step is to extract the coefficient of x y z from this expression. This 

( u ' / 2 + f 1 / 2 ) - 1  = t - ' / 2 ( 1 + U ' / 2 / t ' / 2 ) - l  

assuming the ordering U < t ,  then expanding in Maclaurin series. The desired 
coefficient may then be determined term by term, using (2), and then summed to give 
the contribution of this graph to 7': 

4h&'12[1 +[1/2-(1 +[)'/'I. (AI )  
The same result is obtained for any assumed ordering of U, U, t. 

singular function 
If we operate with I prior to setting s =0, we obtain, again from table 1, the 

2a- '~hot- 'u- 'u-*[ ln(2u 'I2 + t 'I2) - ln(u 'I2 + U ' I 2 ) ] .  

Extraction of the coefficient of xNyLzM proceeds as above; however, in this case it is 
necessary to use a modification of (2) developed by Domb and Joyce. The coefficient 
of x N  in U "  In U is, asymptotically, 

N-"-' 
[G(-v)-ln N + o ( N - '  In N ) ] .  

u - v )  

4h&"2[Ti2((45)-1/2) -Ti2(5'l2) +itr In (401. 

+(x) is the logarithmic derivative of r (x) .  The resulting contribution to v 1  from this 
graph is 

(A2) 
The contribution to Ki-" is found by subtracting ( A l )  from (A2). 

The contribution from graph 6 may be obtained by replacing 5 by A .  
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